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Abstract
For optimal design or control problems involving safety constraints

and parameter uncertainty, a central task is to select safety margins.
Robust optimization provides a natural mechanism for this task. We
propose a general robust formulation for nonlinear programming, and
discuss the advantages and limitations of this formulation.
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An ODE Control Example

min
y,u∈U

∥∥y(T )− yend
∥∥2

2

s.t. ẏ = f(y, u, s), y(0) = yini,

yi(t) ≤ γ, t ∈ (0, T )

— y(t) is state, u(t) is control and s is a parameter vector.

— Parameter s contains uncertainty.

— There are important (inequality) “safety constraints”.

– The system and constraints are generally nonlinear.

Task: Optimize while maintaining safety for all “reasonable” s values.
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Robust Optimization:
Existing Results and Need for Extension

• Robust optimization has been actively studied for linear conic
programming: LP, SOCP, SDP (Ben-Tal & Nemirovski, El Ghaoui, ...).

• Data uncertainty are restricted to cases where

– every uncertain constraint is a linear inequality

– every uncertain parameter appears linearly

– e.g. LP: Ax ≤ b where (A, b) is uncertain (no A(s)x ≤ b(s))

• The applicability of the existing formulations needs to be extended.

• Our extension uses simple ideas: implicit function theorem, linearization
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General Nonlinear Programming

min
y,u∈U

φ(y, u, s)

s.t. F (y, u, s) = 0

G(y, u, s) ≤ 0.

• y = state variable; u = design/control variable; s = system parameter.

• Assume that state equation F = 0 implicitly defines y = y(u, s).

• Assume that a good parameter estimation ŝ is available.

• Assume that all inequalities are “safety constraints”.
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A Look at A Robust Model

min
y,u∈U

φ(y, u, ŝ)

s.t. F (y, u, ŝ) = 0

(Fyys + Fs)(y, u, ŝ) = 0

G(y, u, s)eT ± τ(Gyys + Gs) ≤ 0.

A nonlinear program involving only ŝ, new unknown ys, eT = (1 · · · 1).

min
∥∥y(T )− yend

∥∥2

2

s.t. ẏ = f(y, u, ŝ), y(0) = yini,

ẏs = fy(y, u, ŝ)ys + fs(y, u, ŝ), ys(0) = 0,

y(t)eT ± τys(t) ≤ 0, t ∈ (0, T )



5

Robust Model Derivation: First Step

We start from the Inequality-only case:

min φ(u)

s.t. hi(u, s) ≤ 0, ∀s ∈ S ∀i
m

max {hi(u, s) : s ∈ S} ≤ 0, ∀i

• Can we handle this comfortably?

max
s∈S

hi(u, s)

• Maybe too hard for general S and H = (h1 · · · , hm)T .
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Restrict S and Linearize H

• For τ > 0, define
Sτ = {ŝ + τDδ : ‖δ‖p ≤ 1}

ŝ is the nominal parameter value, δ the unit variation (in p-norm) and τ the
magnitude of the variation. D is a scale or basis matrix for the variations.

• By Taylor approximation,

hi(u, ŝ + τDδ) ≈ hi(u, ŝ) + τ〈∇s hi(u, ŝ), Dδ〉.

• Hence,
max
s∈Sτ

hi(u, s) ≈ hi(u, ŝ) + τ max
‖δ‖p=1

〈DT∇s hi(u, ŝ), δ〉
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Solution of Linearized Maximization

Recall
|〈c, x〉| ≤ ‖x‖p‖c‖q for

1
p

+
1
q

= 1, 1 ≤ p, q ≤ +∞,

and the equality can be achieved, i.e.,

max
‖x‖p=1

〈c, x〉 = ‖c‖q.

• Therefore,

max
s∈Sτ

hi(u, s) ≈ hi(u, ŝ) + τ max
‖δ‖p=1

〈DT∇s hi(u, ŝ), δ〉

= hi(u, ŝ) + τ ‖DT∇s hi(u, ŝ)‖q.

• Now replace max hi(u, s) ≤ 0 by hi(u, ŝ) + τ ‖DT∇s hi(u, ŝ)‖q ≤ 0.
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Robust Model: Inequality-only

min φ(u)

s.t. hi(u, ŝ) + τ ‖DT∇s hi(u, ŝ)‖q ≤ 0, ∀i

• Only need to optimize once at the nominal value s = ŝ.

• The added nonnegative terms are “safety margins”.

• The margins are proportional to the magnitude τ of the variations.

• Also proportional to the sensitivity of hi to parameter s at ŝ.



9

Robust Feasible Set Illustrations
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Feasible set is {(x, y) : |x| ≤ 2, (ax2 + b) ≤ y ≤ 4(ax2 + b)} with â = 1/4 and
b̂ = 1. Robust feasible sets are plotted for q = 1, 2,∞ and various τ values.
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General Nonlinear Programming

min
y,u∈U

φ(y, u, s)

s.t. F (y, u, s) = 0

G(y, u, s) ≤ 0

Approach: Implicit Function, elimination, and Chain Rule .

Let y(u, s) satisfy F (y, u, s) = 0. Then

H(u, s) := G(y(u, s), u, s) ≤ 0

Even if G = G(y, u), H can still be sensitive to s through the state y.
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Be explicit with Implicit Functions

After elimination and robustification:

F (y, u, ŝ) = 0, gi(y, u, ŝ) ≤ 0 =⇒ hi(u, ŝ) + τ‖DT∇s hi(u, ŝ)‖q ≤ 0.

Recall H(u, s) = G(y(u, s), u, s),

∇s hi = (Hs)Tei, Hs = Gs + Gyys.

Implicit functions are hard to handle. We put definitions into constraints.

F (y, u, s) = 0, for y(u, s)

Fyys + Fs = 0, for ys(u, s)

With the above equality imposed,

⇐⇒ gi(y, u, ŝ) + τ‖DT (Gs + Gy ys)Tei‖q ≤ 0
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General Robust Model

min
y,u∈U

φ(y, u, ŝ)

s.t. F (y, u, ŝ) = 0

τ(Fyys + Fs)(y, u, ŝ) = 0

gi(y, u, ŝ) + τ‖DT (Gs + Gy ys)Tei‖q ≤ 0

τ = 0 =⇒ The original model

• The robust model remains a one-level, nonlinear program involving only the
nominal values of uncertain parameters.

• The robust model produces a robust design/control variable u∗. For every
parameter value s near ŝ, we can find a corresponding safe state y(u∗, s).
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A Robust Model for p = 1(q = ∞)

min
y,u∈U

φ(y, u, ŝ)

s.t. F (y, u, ŝ) = 0

τ(Fyys + Fs)(y, u, ŝ) = 0

G(y, u, ŝ)eT ± τ(Gyys + Gs)D ≤ 0

If everything is sensitive to s ∈ <k, then:

n → n + n ∗ k state variables (y and ys)

n → n + n ∗ k equations (for y and ys)

m → 2 ∗m ∗ k inequalities

Computational costs remain in the same order if k = O(1)
(not so if k = O(n) or O(m)).
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ODE Example Revisited

min
∥∥y(T )− yend

∥∥2

2

s.t. ẏ = f(y, u, ŝ), y(0) = yini,

ẏs = fy(y, u, ŝ)ys + fs(y, u, ŝ), ys(0) = 0,

y(t)eT ± τys(t) ≤ 0, t ∈ (0, T )

Let y ∈ <n and s ∈ <k.

• A new ODE system of size n ∗ k is added for the sensitivity ys.

• Safety constraints become a set of 2n ∗ k constraints.



15

1st-Order Robustness

Theorem

Let (ŷ, û) be strictly feasible to corresponding to ŝ and τ > 0.

Assume that in the set Sτ ,

1. y(û, s) is implicitly defined as a differentiable function of s
via the equation F (y, û, s) = 0;

2. every row of [Gy ys + Gs](y(s), û, s) is Lipschitz continuous
modulo to L.

Then
G(y(û, s), û, s) ≤ L

2
τ2, ∀s ∈ Sτ .
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Parameterized Linear Programs:

min
y,u

〈c0(s), y〉+ 〈d0(s), u〉+ γ0(s)

s.t. A(s)y + B(s)u− h(s) = 0

〈ci(s), y〉+ 〈di(s), u〉+ γi(s) ≤ 0

i = 1, 2, · · · ,m

Proposition

If all the functions of s are in C1 (not necessarily linear) and A(s) is invertible,
then the robust model of the above parameterized LP is again an LP for p = 1
or ∞, and an SOCP for p = 2.

— Nonlinear parameter dependency can be handled.

— Equality constraints can be handled (at least partially).
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Applicability, Advantages and Limitations

• Provide intelligent safety margins to maintain safety under parameter
uncertainty.

• Can handle a wide range of general nonlinear programs.

• Solve a one-level nonlinear program at the nominal value; relatively
inexpensive when the number of uncertain parameters is moderate.

• Require good parameter estimates. Parameter variations need to be
relatively small around their nominal values.

• Robust only to the 1st-order around the nominal value.

• A technical report is available at:
http://www.caam.rice.edu/caam/trs/2004/TR04-13.pdf

http://www.caam.rice.edu/caam/trs/2004/TR04-13.pdf

